
SERIES - 100 krad (Si) TID Element Evaluation MIL-PRF-38534, Class K

Crystal Oscillator | 5.0V | CMOS | Space Grade | 5x7 mm Ceramic SMD

5x7 mm Ceramic SMD Package

Features

- **Ruggedized Design**
 - **High-Shock & Vibration**
- **Industry Standard Package**
- **Shortest Lead Time**
- **Best Stability Over Temperature**
- Small Hi-Rel SMD Package **Customer Support & Service**
- ECCN EAR 99
- See S89 Datasheet for 5V Operation
- Robust, Rugged, High Shock Crystal Support (3 or 4 point Crystal Mount)

Electrical SPECIFICATIONS

EM	Dash Numb EQM	er FM	Frequency Range (MHz)	Supply Current @ 5.0V ±10% (mA)	Rise/Fall Time (tr/tf) max (nsec)	Symmetry min / max (%)	Aging per year max 1/ (ppm)	Stability of -55°C to +125°C (ppm)	ver Operatir -55°C to +125°C (ppm)	-40°C to +85°C (ppm)	ture Range -20°C to +70°C (ppm)
CODE	CODE	CODE						CODE A*	CODE B	CODE	CODE
01	02	03	0.25 to 0.9	8	3	48/52	±10	±50	±65	±40	±30
04	05	06	1 to 7.9	8	3	48/52	±10	±50	±65	±40	±30
07	08	09	8 to 15.9	12	3	45/55	±10	±50	±65	±40	±30
11	12	13	16 to 49.9	30	3	45/55	±10	±50	±65	±40	±30
14	15	16	50 to 64.9	35	2	40/60	±10	±50	±65	±40	±30
17	18	19	65 to 84.9	45	2	40/60	±10	±50	±65	±40	±30
21	22	23	85 to 100	50	2	40/60	±10	±50	±65	±40	±30

Please Contact Us for Specification Options that are Outside of or beyond those Shown in the Table Above

CMOS Output, 10 kΩ || 15 pF Load

Output Voltage - Logic "0" is Vcc x 0.1 Vdc Output Voltage - Logic "1" is Vcc is 0.9 Vdc Start-up Time: 10 msec max

1/ Frequency Aging Limits

Max change over 30 days ±1.5 ppm Max change over 90 days ±3 ppm

* Enable, Logic 1 | Disable, Logic 0 Terminate any unused pads. (they are not terminated internally).

*Code A, total overall stability vs. temperature of ± 60 ppm includes ± 20 ppm accuracy at +23°C

Standard MODEL TYPES

Model	Description
EM: Engineering Models	Same as FM, not with Class K radiation tolerant die commercial screening only
EQM: Engineering Qualification Models	Same as FM with Class K radiation tolerant die*, B or C level screening only
FM: Flight Models	Class K radiation tolerant die*, screening & Group A
	*unless specified otherwise

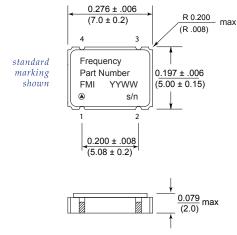
Standard PIN CONFIGURATION

Pin Number	Function
1	No Connect
2	Ground (case)
3	Output
4	Supply V (Vcc)

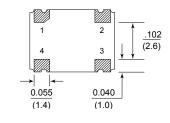
How To **ORDER**

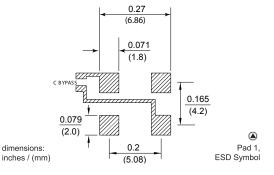
electrical specifications within frequency range / tristate option code

06


operating temperature range

example:


output


frequency

S74S06A-1M000000

Mechanical SPECIFICATIONS

MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2015 Pb-free RoHS Certified

Thru-hole Leaded 5x7 mm Ceramic SMD for Space, Please Inquire!

New 5x3.2 Radiation Tolerant Oscillator for Space, Please Inquire!

Screening- S, B & C LEVELS (per FMI General Specification for Class S Oscillators) CODE Screening Method Level: S В Non-Destruct Bond Pull MIL-STD-883. Method 2023 Internal Visual MIL-STD-883, Method 2017, Class K; Method 2032 . MIL-STD-883, Method 2017, Class H; Method 2032 • Stabilization (Vacuum) Bake MIL-STD-883, Method 1008, Condition C, 150°C, 48 hours min MIL-STD-883, Method 1008, Condition C, 150°C, 24 hours min **Temperature Cycling** MIL-STD-883, Method 1010, Condition B, 10 Cycles **Constant Acceleration** MIL-STD-883, Method 2001, Condition A (Y1 only, 5000 g's) PIND Test MIL-STD-883, Method 2020, Condition B, 5 passes max Seal: Fine Leak MIL-STD-883, Method 1014, Condition A1 MIL-STD-202, Method 112, Condition C, 111A Seal: Gross Leak MIL-STD-202, Method 112, Condition D **Electrical Test** Functional Test Only at +23°C Marking & Serialization MIL-STD-1285 **Electrical Test** Nominal Vcc & Extremes and Nominal Temp and Extremes +125°C, Nominal Supply Voltage and Burn-in load, 160 hours min Burn-in (load) Burn-in (no-load) +125°C, Nominal Supply Voltage and Burn-in load, 48 hours min Interim Electrical **Functional Test Only** +125°C, Nominal Supply Voltage and Burn-in load, 160 hours min Burn-in (load) • **Final Electrical Test** Input current, output frequency, output waveform, are tested at +23°C ±2°C Frequency stability is tested over the specified temperature range; at both extremes and at +25°C at a minimum of 5 temperature increments note: Recording of test data is by lot # and then serial # Radiography MIL-STD-883. Method 2012 Frequency Aging MIL-PRF-55310. +70°C Condition Frequency/Temperature Stability MIL-PRF-55310, Over temperature extremes, 20 points equally spaced External Visual & Mechanical MIL-STD-883. Method 2009

note: other options, screening levels and custom test plans available.

MIL-STD-790 Certified QPL per MIL-PRF-55310 ISO 9001:2015 Pb-free RoHS Certified

Military Reference Specifications

	·
MIL-PRF-55310	Oscillators, Crystal Controlled, General Specification For
MIL-PRF-38534	Hybrid Microcircuits, General Specification For
MIL-STD-202	Test Method Standard, Electronic and Electrical Components
MIL-STD-883	Test Methods and Procedures for Microelectronics
MII -STD-1686	Electrostatic Discharge Control Program for Protection of

Electrical and Electronic Parts, Assemblies and Equipment

Please request our General Specification for Class S Oscillators Document # QP1100100

Options Available for FLIGHT MODELS

- Screening, Groups A, B, C, & D per MIL-PRF-38534 (QCI or Qualification)
- Screening, Groups A, B & C per MIL-PRF-55310
- Single Lot Date Code

Data Packages

Source Inspection

■ Swept Quartz Crystals

HiRes Photography

Environmental COMPLIANCE

Environmental	Specification	Method	Condition	
Vibration – Sine	MIL-STD-202	Method 204	Condition D	20g, 10 to 2 KHz
Vibration – Random	MIL-STD-202	Method 214	Condition 1	30g rms, 10 to 2 KHz Random
Shock	MIL-STD-202	Method 213	Condition I	100g, 6 ms, F:1500, 0.5 ms
Seal Test	MIL-STD-883	Method 1014	Condition A1	Fine Leak
Seal Test	MIL-STD-883	Method 1014	Condition C1	Gross Leak
Temperature Cycling	MIL-STD-883	Method 1010	Condition B	10 Cycles Minimum
Constant Acceleration	MIL-STD-883	Method 2001	Condition A	5000g, Y1 Axis
Thermal Shock	MIL-STD-202	Method 107	Condition B	

continued...

Environmental	Specification	Method	Condition
Ambient Pressure	MIL-STD-202	Method 105	Condition C
Resistance to Soldering Heat	MIL-STD-202	Method 210	Condition C
Moisture Resistance	MIL-STD-202	Method 106	with 7B Sub-cycle
Salt Atmosphere (corrosion)	MIL-STD-883	Method 1009	Condition A (24 hrs)
Terminal Strength	MIL-STD-202	Method 211	Test Condition D
Solderability	MIL-STD-883	Method 2003	
Resistance to Solvents	MIL-STD-202	Method 215	

Materials

- 1. Package Materials: Ceramic, Alumina 90% min
- 2. Pad Plating Material: Gold Plate 0.3 μm (12 μ inch) over 2 μm (80 μ inch) min. Nickel

Products for Space Applications

Contact us for assistance with your specification. We will provide you with the technical support and the required documentation.

Issue 11_12192023

Ph. 714 373 8100 Fx. 714 373 8700